If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+0-16=0
We add all the numbers together, and all the variables
9y^2-16=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| 90=10(2y+1 | | 80=6x+4 | | 9y^2+0+16=0 | | 5x+72=3×-36 | | -0.5x^2-0.3x+9=0 | | 3x+22=2x+24 | | 3x-47=37 | | -1(x-1)=-3 | | 4-9m=-14 | | 2(-5y+-1)=8 | | k÷9–1=10 | | 16x-9x+8=47 | | -5x-17x=48 | | (w+4)^2=0 | | *5x+25=65 | | 7x-8x=-7 | | (w+4)^2(w+1)=0 | | 16x2=80x | | 1/2+2/5r-1=1/5r+r | | 1/2+2/5r-1=1/5r | | x+(0.10+x)=55 | | -2n^2+18n+0=0 | | 33x=2^x | | 5x-8=2x+ | | x-4=-3x+9 | | Y2=-45+4y | | 11p=5.28 | | 5(t-4)-t=4 | | -15x2-40x=20x2-8x | | (1)/(4)(5b+11)=19 | | 35/200=x200 | | x−355+x+80+2x= |